

Degeneration-aware Outlier Mitigation for Visual Inertial Integrated Navigation System in Urban Canyons

Xiwei Bai(**Presenter**), Weisong Wen, Li-Ta Hsu*

Department of Aeronautical and Aviation Engineering The Hong Kong Polytechnic University

22 March 2022

Challenges of Positioning in Urban Areas

Key problem 1: Dynamic object degrades the visual positioning!

Key problem 2: Poor illumination condition degrades the feature detection and tracking

IMU is subject to severe drift in dense traffic scenarios!

Dynamic object degrades the visual positioning!

Research Track to Solve the Key Problems

Degeneration-aware Outlier Mitigation for VINS

GM: the Geman McClure function

and Aviation Engineering 📿

THE HONG KONG

Iteratively estimate the optical flow and estimate **the optimal weightings** of feature correspondences

How to detect degeneration?

Qin, T., Li, P., & Shen, S. (2018). Vins-mono: A robust and versatile monocular visual-inertial state estimator. *IEEE Transactions on Robotics*, *34*(4), 1004-1020.4

Traditional Optical Flow

KLT (Kanade-Lucas-Tomasi) -Optical flow^[1]: Two-frame difference optical flow estimation algorithm.

- Constant brightness
- Short-distance (short-term) movement
- Spatial consistency

I(u, v, t) = I(u + du, v + dv, t + dt)

First-order Taylor expansion:

 $I(u + du, v + dv, t + dt) = I(u, v, t) + \frac{\partial I}{\partial u} du + \frac{\partial I}{\partial v} dv + \frac{\partial I}{\partial t} dt$

$$\frac{\partial I}{\partial u}\frac{u}{dt} + \frac{\partial I}{\partial v}\frac{v}{dt} = -\frac{\partial I}{\partial t}$$

$$I_u u_t I_v v_t I_t$$

Only one equation but two unknown variables

[1] Beauchemin, Steven S., and John L. Barron. "The computation of optical flow." *ACM computing surveys (CSUR)* 27.3 (1995): 433-466.

THE HONG KONG

$$\begin{bmatrix} I_{u1} & I_{v1} \\ I_{u2} & I_{v2} \\ \vdots & \vdots \\ I_{ui} & I_{vi} \end{bmatrix} \begin{bmatrix} \Delta u \\ \Delta v \end{bmatrix} = - \begin{bmatrix} I_{t1} \\ I_{t2} \\ \vdots \\ I_{ti} \end{bmatrix}, i \in (1, n \times n)$$

nd Aviation Engineering

$$\begin{bmatrix} \Delta u \\ \Delta v \end{bmatrix} = (\mathbf{A}^{\mathrm{T}} \mathbf{A})^{-1} \mathbf{A}^{\mathrm{T}} (-b)$$

with $\mathbf{A} = \begin{bmatrix} I_{u1} & I_{v1} \\ I_{u2} & I_{v2} \\ \vdots & \vdots \\ I_{ui} & I_{vi} \end{bmatrix} b = \begin{bmatrix} I_{t1} \\ I_{t2} \\ \vdots \\ I_{ti} \end{bmatrix}$

$$\begin{bmatrix} \Delta u \\ \Delta v \end{bmatrix} = \begin{bmatrix} \sum_{i} I_{ui}^{2} & \sum_{i} I_{ui} I_{vi} \\ \sum_{i} I_{vi} I_{ui} & \sum_{i} I_{vi}^{2} \end{bmatrix}^{-1} \begin{bmatrix} -\sum_{i} I_{ui} I_{ti} \\ -\sum_{i} I_{vi} I_{ti} \end{bmatrix}$$

Graduated Non-Convexity (GNC) Method

Original cost function:

Outlier process GNC-Geman McClure

$$\Phi_{\rho_{\mu}}(\omega_i) = \mu c^2 (\sqrt{\omega_i} - 1)^2$$

Alternating Minimization

State Update: fixed weighting ω_i , optimize state **x**

- Originally is a convex optimization problem
- The initial guess is given from last iteration.

Weight Update: fixed state \mathbf{x} , optimize weighting ω_i

Solved in closed-form

[1] Yang, Heng, et al. "Graduated non-convexity for robust spatial perception: From non-minimal solvers to global outlier rejection." IEEE Robotics and Automation Letters 5.2 (2020): 1127-1134.

Graduated Non-Convexity (GNC) Optical Flow

THE HONG KONG

and Aviation Engineering

Graduated Non-Convexity (GNC) Optical Flow

$$\min_{\Delta u^*, \Delta v^*, \omega_{t,i} \in \mathcal{W}} \sum_{i=1}^{n^2} \left(\omega_{t,i} \left\| r \left(\mathbf{\Omega}_{t,i}, \begin{bmatrix} \Delta u \\ \Delta v \end{bmatrix} \right) \right\|_{\sigma_t^i}^2 + \phi_{\rho_\mu}(\omega_{t,i}) \right)$$
$$\phi_{\rho_\mu}(\omega_{t,i}) = \mu c_{GM}^2 \left(\sqrt{\omega_{t,i}} - 1 \right)^{2} [1]$$

 $\omega_{t,i} < \omega_{thresh}, \omega_{t,i} \in \mathcal{W}$

Optimize the GNC-OF problem:

Step1. Initialization:

 $\omega_{t,1}, \omega_{t,2}, \cdots, \omega_{t,i}, \omega_{t,i} \in \mathcal{W}$

Step2. Variable update (weighting fixed): $\min_{\Delta u^*, \Delta v^*, \omega_{t,i} \in \mathcal{W}} \sum_{i=1}^{n^2} \left(\omega_{t,i} \tilde{r}_{t,i}^2 + \emptyset_{\rho_{\mu}}(\omega_{t,i}) \right)$

Step3. Weight update (variable fixed):

$$\omega_{t,i} = \left(\frac{\mu c_{GM}^2}{\tilde{r}_{t,i}^2 + \mu c_{GM}^2}\right)^2$$

Step4. $\mu = \frac{\mu}{1.4}$, repeat Steps 2 to 4, until $\mu = 1$.

[1] Yang, Heng, et al. "Graduated non-convexity for robust spatial perception: From non-minimal solvers to global outlier rejection." IEEE Robotics and Automation Letters 5.2 (2020): 1127-1134.

Degeneration Detection and Alleviation

 $\begin{aligned} & \mathsf{Detect degeneration using Eigen values} \\ & \mathsf{of Jacobian!} \\ & \mathsf{H}_{j,l}^{e} = \begin{bmatrix} \frac{\partial r_{c}^{l}}{\partial \delta \mathbf{p}_{b_{e}}^{w}} & \frac{\partial r_{c}^{l}}{\partial \delta \mathbf{q}_{b_{e}}^{w}} \\ & \frac{\partial r_{c}^{l}}{\partial \delta \mathbf{p}_{b_{e}}^{w}} & \frac{\partial r_{c}^{l}}{\partial \delta \mathbf{q}_{b_{e}}^{w}} \end{bmatrix} & \frac{\partial r_{c}^{l}}{\partial \delta \mathbf{p}_{b_{e}}^{w}} = \mathbf{R}_{b}^{c} \mathbf{R}_{w}^{b_{j}} \mathbf{R}_{w}^{w} \left(\mathbf{R}_{c}^{b} \frac{1}{\lambda_{l}} \hat{p}_{l}^{c_{e}} + \mathbf{p}_{c}^{b} \right)^{\wedge} \\ & \frac{\partial r_{c}^{l}}{\partial \delta \mathbf{q}_{b_{e}}^{w}} = -\mathbf{R}_{b}^{c} \mathbf{R}_{w}^{b_{j}} \mathbf{R}_{b_{e}}^{w} \left(\mathbf{R}_{c}^{b} \frac{1}{\lambda_{l}} \hat{p}_{l}^{c_{e}} + \mathbf{p}_{c}^{b} \right)^{\wedge} \\ & \mathsf{Jacobian Matrix} \quad \mathbf{r}_{c} \left(\hat{Z}_{l}^{c_{j}}, \chi \right) = (\hat{p}_{l}^{c_{j}} - \bar{p}_{l}^{c_{j}}) \\ & \mathbf{P}_{l}^{c_{j}} = \mathbf{R}_{b}^{c} (\mathbf{R}_{w}^{b_{j}} (\mathbf{R}_{b_{i}}^{w} (\mathbf{R}_{b_{i}}^{c} \frac{1}{\lambda_{l}} \pi_{c}^{-1} (\begin{bmatrix} \hat{u}_{l}^{c_{i}} \\ \hat{v}_{c}^{c_{i}} \end{bmatrix}) + \mathbf{p}_{c}^{b}) + \mathbf{p}_{b_{i}}^{w} - \mathbf{p}_{b_{j}}^{w}) - \mathbf{p}_{c}^{b}) \end{aligned}$

$$\frac{\partial \mathbf{r}_{\mathcal{C}}^{l}}{\partial \delta \mathbf{p}_{b_{j}}^{w}} = -\mathbf{R}_{b}^{c} \mathbf{R}_{w}^{b_{j}} \qquad \frac{\partial \mathbf{r}_{\mathcal{C}}^{l}}{\partial \delta \mathbf{q}_{b_{j}}^{w}} = \mathbf{R}_{b}^{c}$$

$$\mathbf{H}_{\mathcal{C}} = \begin{bmatrix} \mathbf{H}_{j,0}^{e} \\ \vdots \\ \mathbf{H}_{j,E}^{e} \end{bmatrix} \qquad \mathbf{H}_{\mathcal{C}}^{T} \mathbf{H}_{\mathcal{C}} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T}$$

$$\boldsymbol{\lambda} = \begin{bmatrix} \lambda_{1} \quad \lambda_{2} \quad \lambda_{3} \quad \lambda_{4} \quad \lambda_{5} \quad \lambda_{6} \end{bmatrix}^{T}$$

$$D_{\lambda} = \|\lambda_{min} - \lambda_{thresh}\|, \text{ with } \lambda_{min} < \lambda_{thresh}$$

How to mitigate degeneration?

$$N_f^* = N_f + \frac{D_\lambda}{10}$$
, with $\lambda_{min} < \lambda_{thresh}$

Experimental Results

VINS-Mono : The original VINS solution from [9].

ORB-SLAM3: The ORB features are employed for visual feature detection and association.

VINS-AC-ME [13]: VINS aided by adaptive covariance estimation and adaptive M-estimator in our previous work

VINS-GNC-OF: The visual outlier rejection in the front end using the proposed GNC in this paper (first contribution in this work)

VINS-DAOM: The proposed degeneration-awareness outlier mitigation for VINS, Note that the proposed optical flow, GNC-OF,

is included in the front-end of this method.

THE HONG KONG

Aviation Engineering

(b)

IVERSITY

Experimental Results

Rotation performance in urban canyon 1

Positioning performance in urban canyon 1								
Items	VINS- Mono	ORB- SLAM3	VINS- AC- ME	VINS- GNC- OF	VINS- DAOM			
MEAN (m)	0.71	0.86	0.71	0.45	0.40			
FPE (m)	86.09	71.52	65.38	51.63	51.63			
STD (m)	0.98	2.26	0.86	0.54	0.46			
Max (m)	4.03	23.82	3.88	3.02	3.02			
Improve ment%			0%	36.6%	43.6%			
Positioning errors- urban canyon 1								

Items	VINS- Mono	ORB- SLAM3	VINS- AC- ME	VINS- GNC- OF	VINS- DAOM
MEAN ([°])	0.89	2.04	0.84	0.89	0.87
FPE (^o)	8.42	255.98	7.59	7.46	7.46
STD (⁰)	0.94	11.09	0.85	0.98	0.90
Max (^o)	4.81	119.86	4.77	6.79	4.80
Improve ment%			4.82%	0.22%	2.13%

The rotation usually offers **better constraints** with the help of the gyroscope sensor inside the employed IMU sensor

Department of Aeronautical and Aviation Engineering 航空及民航工程學系 THE HONG KONG POLYTECHNIC UNIVERSITY 香港理工大學

Experimental Results

Epoch (seconds)

Experimental Results

Analysis of the residuals and weightings of the feature tracking of conventional optical flow from OpenCV and the feature tracking from GNC-OF at epochs 351 and 352.

THE HONG KONG

香港理工大學

and Aviation Engineering

C UNIVERSITY

Brief Summary

- Solved Problems: Detect the potential outliers caused by dynamic objects and remove, then increasing the features based on degeneration level.
- Limitations: The accumulated drift still exists.
- Current work: Investigating the global navigation satellite system (GNSS) to provide global positioning for VINS for intelligent vehicles.

Thank you for your attention

